## Central Bank Accounts For All! (And when they do any good.)

Carl Hallmann

September 26, 2022

### Motivation

#### Why talk about it?

- Digital currency issued by central bank could effectively work as central bank account for all.
  - Current policy interest (BIS, Bank of England, Bank of Canada, Swedish Riksbank)
- Besides 100% Reserve Banking way to prevent banks form creating money.
  - Benes Kumhof (2012) argue 100% reserve banking is the same as CBDC.
  - Referendum in Switzerland ("Vollgeld").
  - Debate in Icelandic parliament.
  - "Chicago Plan" as response to banking crisis in 1930s.

### Motivation

#### The version of CBDC in this paper:

- Government only guarantees CBDC with capacity to tax, not deposits at banks.
- Government receives deposits from households, and hands them over to banks.

### Literature

#### Who else talks about it?

- Setting the stage.
  - Brunnermeier and Niepelt (2019).
- Central bankers.
  - Coeure and Loh (2019), Engert and Fung (2017)
- People not primarily concerned about banks' incentives.
  - Piazzesi and Schneider (2020), Bech and Garratt (2017), Chapman Wilikns (2018), Andolfatto (2018), Keister and Sanches (2019)
- Chicago plan enthusiasts.
  - Benes and Kumhof (2012), Fisher (1936), Simons (1946)
- Narrow banking pro-/op-ponents.
  - Kay (2009), Wallace et al. (1996)
- Central bank accounts for all and maturity transformation.
  - Fernandez-Villaverde et al. (2020).

### Preview of Results

#### What Friction?

Deposit insurance leads to over-investment.

#### Can CBDC Achieve First Best?

- No, if households get paid before the government by defaulting bank.
- Achieves first best if
  - 1. households and government receive money "at the same time" when bank defaults.
  - 2. last dollar of loans receives the output it creates as collateral.

### Preview of Results

Individual uncertainty about timing of consumption (Diamond and Dybvig)



### Outline

#### Plan

- 1. Main Mechanics.
  - 1.1 Derive what governs efficiency in general setup.
  - 1.2 Describe efficiency in different cases.
  - 1.3 Discussion.
- 2. Big picture.

## Setup

#### **Basic Setup**

- Two periods, household, bank.
- Only household consumes.
- Bank produces and tries to act in household's interest.
- Bank finances itself with deposits (d) and loans (s).

### Setup

#### Notation

What household receives in state ω if it invests d in deposits and s in loans at interest rates r:

$$t_h(r, s, d, \omega)$$

What bank pays in state ω if it receives d in deposits and s in loans at interest rates r:

$$t_b(r, s, d, \omega)$$

- Can differ because of deposit insurance.
- Can differ because household gives deposits to government, who hands them on to banks.

## Setup

#### What determines level of investment?

Level of deposits effectively set by government.

With deposit insurance deposits better for household than loans because insured.

 $\Rightarrow$  Free to choose deposits by setting how much deposits are insured.

With CBDC government sets a different interest rate for household and banks.

 $\Rightarrow$  Free to choose deposits by setting interest rate for household.

#### Takeaway

- Deposits are effectively fixed.
- Overall investment governed by incentive to invest in loans.

## Money, Money, Money

#### **Social Planner**

Problem:

$$u_0(n_h+n_b-a)+\int u(f(a)\omega)dH(\omega)$$

$$u_0'(n_h+n_b-a)=\int u'(f(a)\omega)f'(a)\omega dH(\omega)$$

Look at cases in which FOC is sufficient for optimum.

Problem:

$$\max_{d,s} u_0(n_h - s - d) + \int u(t_h(r, s, d, \omega) - \tau(\omega) + \pi(\omega)) dH(\omega) \\ + \{\lambda(\overline{d} - r_d d)\}$$

► Problem:

$$\max_{d,s} u_0(n_h - s - d) + \int u(t_h(r, s, d, \omega) - \tau(\omega) + \pi(\omega)) dH(\omega) + \{\lambda(\overline{d} - r_d d)\}$$

► FOC:  
$$u'_0(n_h - s - d) = \int u'(f(a)\omega) \frac{\partial t_h(\omega)}{\partial s} dH(\omega)$$

► Problem:

$$\max_{d,s} u_0(n_h - s - d) + \int u(t_h(r, s, d, \omega) - \tau(\omega) + \pi(\omega)) dH(\omega) \\ + \{\lambda(\overline{d} - r_d d)\}$$

FOC:  
$$u'_{0}(n_{h} - s - d) = \int u'(f(a)\omega) \frac{\partial t_{h}(\omega)}{\partial s} dH(\omega)$$

#### Bank

Problem:

$$\max_{d',s'} u_0(n_h-s-d) + \int u(\iota(\omega) + f(n_b+d'+s')\omega - t_b(r,s',d',\omega))dH(\omega)$$

Problem:

$$\max_{d,s} u_0(n_h - s - d) + \int u(t_h(r, s, d, \omega) - \tau(\omega) + \pi(\omega)) dH(\omega) \\ + \{\lambda(\overline{d} - r_d d)\}$$

FOC:  
$$u'_{0}(n_{h} - s - d) = \int u'(f(a)\omega) \frac{\partial t_{h}(\omega)}{\partial s} dH(\omega)$$

#### Bank

Problem:  

$$\max_{d',s'} u_0(n_h - s - d) + \int u(\iota(\omega) + f(n_b + d' + s')\omega - t_b(r, s', d', \omega))dH(\omega)$$

FOC:  

$$\int u'(f(a)\omega) \frac{\partial t_b(\omega)}{\partial s} dH(\omega) = \int u'(f(a)\omega)f'(a)\omega dH(\omega)$$
12/3

## Money, Money, Money

#### **Reminder:**

$$u_0'(n_h - s - d) = \int u'(f(a)\omega) \frac{\partial t_h(\omega)}{\partial s} dH(\omega)$$

$$\int u'(f(a)\omega)\frac{\partial t_b(\omega)}{\partial s}dH(\omega) = \int u'(f(a)\omega)f'(a)\omega dH(\omega)$$

#### **Consequence:**

- If  $t'_b(\omega) = t'_h(\omega)$  we get the efficient outcome.
- If t'<sub>b</sub>(ω) ≤ t'<sub>h</sub>(ω) and sometimes the equality is strict, then we get over-investment.

## Money, Money, Money

#### Important Takeaway:

Ignore optimization problem. Just look at whether what the household gets from last dollar invested is what the bank pays for it.

#### Lemma (Efficiency)

*If the planner's problem is convex and the FOCs for loans hold with equality* 

- the allocation is efficient if  $\frac{\partial}{\partial s}t_b(\omega) = \frac{\partial}{\partial s}t_h(\omega)$
- ▶ there is over investment if  $\frac{\partial}{\partial s}t_b(\omega) \leq \frac{\partial}{\partial s}t_h(\omega) \forall \omega$  and the inequality is strict with positive probability
- ▶ there is under-investment if  $\frac{\partial}{\partial s}t_b(\omega) \geq \frac{\partial}{\partial s}t_h(\omega)$   $\forall \omega$  and the inequality is strict with positive probability

in equilibrium.

### **Results for Baseline**

#### Baseline

- Deposit insurance.
- Loans are collateralized /have precedence in times of default.

#### When are slopes of Transfer functions different?

- $\blacktriangleright \ \omega$  such that bank defaults on deposits, not on loans.
- One additional dollar invested in loans receives full interest rate so t'<sub>h</sub>(ω) = r<sub>s</sub>.
- Bank pays everything it has, so additional payment by bank is  $t'_b(\omega) = f'(a)\omega$ .
- The second is smaller than the first in default.

#### Consequence

Over-investment.

## Result for CBDC WithOUT Bank Reform

#### **CBDC** without bank reform

In default loans have precedence.

#### When are slopes of Transfer functions different?

- $\blacktriangleright \ \omega$  such that bank defaults on deposits, not on loans.
- One additional dollar invested in loans receives full interest rate so t'<sub>h</sub>(ω) = r<sub>s</sub>.
- Bank pays everything it has, so additional payment by bank is  $t'_b(\omega) = f'(a)\omega$ .
- The second is smaller than the first in default.

#### Consequence

Over-investment.

Proposition (CBDC without Bank Reform versus Baseline) If there is an equilibrium with investments  $d^*$ ,  $s^*$  in the model with deposit insurance for some  $\overline{d}$  then for some  $r_d^h$  there is an equilibrium in the model with CBDC for which equilibrium investment is  $d^*$ ,  $s^*$  and vice versa.

### CBDC With Bank Reform

#### **CBDC** with bank reform

- Household and government paid at same time.
- Last dollar of investment receives collateral it creates.

#### Transfer functions are the same.

- No default: no problem.
- Default on household and central bank:
  - Last dollar receives its marginal product as collateral, thus household receives marginal product, and bank pays it.
  - $\blacktriangleright t'_h(\omega) = t'_b(\omega).$
- Bank defaults on government and not on household debt.
  - Cannot happen by assumption.

#### Consequence

Efficient solution.

## Is This Feasible?

When do banks default on government and household simultaneously?

- If banks can pledge high quality collateral, then other lenders have precedence over government.
- If banks do maturity transformation, non-government creditors are likely to run first.
- If banks get bailed out when they default this is effectively the same as deposit insurance.

#### How do we implement optimal bank reform?

- Implementation of optimal bank reform difficult.
- I characterize it, but I do not provide a mechanism (transfer function depends on equilibrium objects).
- But: requiring risky collateral from banks leads to second best.

### Outline

#### Plan

- 1. Main Mechanics.
- 2. Big picture.
  - Model
  - Forces
  - Outcomes

## **Big Picture**

Individual uncertainty about timing of consumption (Diamond and Dybvig)



## Model Overview



Figure 3: Model Overview.

- Now two households and two banks.
- Some deposits have precedence in times of default because they are withdrawn.
- Production is linear.

## Equilibrium

#### Equilibrium

- In second stage households choose to withdraw deposits maximizing utility.
- In second stage banks maximize value of assets.
- In first stage bank/household optimize as before.

### Second Stage

Banks in Second Stage

$$\max_{\Delta} A_2 \omega (a - \frac{1}{A_1 \omega} \Delta) + p \Delta.$$

- Might already know that they will default, and thus maximize value of their assets.
- Liquidating deposits results in payoff  $A_1 < A_2$ .
- Equivalent to having banks and households optimize to reinvest deposits.

## Second Stage

Household Second Stage

$$\max_{\Delta \in \mathcal{D}} U(c_e, c_l, \psi) + \lambda(-c_e + \Delta) + \mu(m - pc_e - c_l)$$

- ▶  $0 = \psi$ : household only wants to consume late:  $U = c_I = m$ .
- 1 = ψ: household wants to consume share of its income early until income hits threshold, then wants to consume everything above threshold late.
  - Ensures that if limit on r<sub>d</sub>d high enough there are always enough deposits.
  - Ensures that if there is no run only fraction of deposits is withdrawn.
  - Scale utility function such that it becomes

 $U(c_e(m), c_l(m), 1) = m$ 

if liquidity constraint does not bind.

 $\Rightarrow$  with sufficient deposits liquidity disappears.

### Forces

#### Forces in the model

- What banks pay is not what households receive.
- Runs on deposits.

#### Forces shut down

- Inefficient incentives of banks who know they will default.
- Runs on anything but deposits.
  - Only deposits are run-able (not financial crisis like).
  - Avoids that CBDC with bank reform shuts down runs on loans in addition to fixing bank's investment incentives.
- "Collateral externalities" (changing my investment creates/takes away collateral for others/ other types of lending).
  - Still anticipate that investing in loans creates collateral that backs these loans.
  - Still anticipate that when there's a run on deposits loans might receive zero.

### Outcomes

#### No Deposit Insurance

- Keep limit on deposits to make models comparable.
- Set deposits high enough such that liquidity considerations no concern.
- Runs result in effectively lower production.
- If there is a default and banks get run at there might be no deposits left that can be used to pay back loans.
- Slope of transfers paid by bank's sometimes higher than slopes of transfers received by households.
- $\Rightarrow$  Lower investment than in planner's problem with inferior production technology.

### Outcomes

#### Shrinking the model

- Set level of deposits such that
  - there is sufficient liquidity to finance optimal early consumption.
  - there are not enough deposits to finance optimal investment.
- Liquidity disappears from the model, and loans determine level of investment.
- Model reduced to the one previously studied (one extra parameter).

#### Outcomes

- Deposit insurance  $\Rightarrow$  Over-investment.
- CBDC and no bank reform  $\Rightarrow$  Over-investment.
- CBDC and bank reform  $\Rightarrow$  Optimal allocation.

### Why?

Same arguments as in first version of the model.

### Outcomes

#### Leverage constraint and Deposit Insurance

- Two choice variables (loans and deposits), two policy tools (level of deposits, leverage constraint).
- Set deposits to anything that provides sufficient liquidity in every state, and set them lower than optimal investment.
- Set investment using leverage constraint.
- $\Rightarrow$  Optimal solution.

## Wrapping Up

#### Issues

#### Why CBDC if we can use leverage constraints?

- Optimal leverage constraint requires knowledge of optimal investment.
- CBDC requires knowledge about how much liquidity is needed.
- $\Rightarrow$  nationalizing liquidity provision lets market set investment.
  - Neither CBDC nor leverage constraints without problems.
- $\Rightarrow$  Question is which works better.
- Why is CBDC essential? Bank reform without CBDC possible?
  - Effectively bank reform without CBDC requires limit on amount of money one can deposit in bank.
  - CBDC provides opportunity for bank reform.
  - Requiring collateral from banks plausible when CBDC introduced.

## Wrapping Up

#### Can CBDC Achieve First Best?

- No, if households get paid before the government by defaulting bank.
- Achieves first best if
  - 1. households and government receive money "at the same time" when bank defaults.
  - 2. last dollar of loans receives the output it creates as collateral.
- First best CBDC
  - is not obviously implementable.
  - would eliminate chain of inefficiencies and fixes in current system.

# Thank you!